NH
& JOURNAL OF

\$ e e S31Val
?E GEOMETRY ao>

PHYSICS
ELSEVIER Journal of Geometry and Physics 44 (2002) 196-201

www.elsevier.com/locate/jgp

Applications of Bochner formula to minimal
submanifold of the sphere
A. Barros

Departamento de Matematica, UFC, Fortaleza, CE 60455760, Brazil
Received 14 January 2002

Abstract

The aim of this note is to study some properties of compact minimal submani¥sidsf the
Euclidean spheré®™. We will give estimates for the first eigenvalue of the Laplaciarf as
well as present a new estimate for the norm of the second fundamental form for hypersurfaces.
Moreover, we obtain a new characterization of the spl§ére
© 2002 Elsevier Science B.V. All rights reserved.

MSC:Primary 53C42; Secondary 53C20
Subj. Class.Differential geometry

Keywords:Minimal submanifolds; Eigenvalues; Second fundamental form

1. Introduction

Given a closed Riemannian manifald® let : M"* — S"*P be a minimal immersion.
We will denote the second fundamental formiaf\/) by B as well as the squared lengthif
by S. There is a well-known theorem due to Takah@$8] which asserts thaty +ny = 0,
whereA stands for the Laplacian in the induced metricyoyThereforen is an eigenvalue
of A and it was conjectured by Ydui 1] that for such embedded hypersurfacess the
first eigenvalue ofA. This occurs for some class of minimal isoparametric hypersurfaces
of §"*1, see[8]. It is important to point out that the first global result in the direction of
Yau problem is that one obtained by Choi and Watigvhich states.1 > (n/2), but their
technique works only for codimension one. In a recent paper, Barros and[Beskawed
thati, > (n/2) + C, whereC is a constant which depends #fi* andq).
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On the other hand, Chern conjectured that wiSeis constant it describes a discrete
set. The first contribution on this problem was given by Sim@jsvhere he showed if
S satisfies 0< S < n/(2 — (1/p)), then eitherS = 0 or S = n/(2 — (1/p)). When
S =n/(2-(1/p)) was shown independently by Chern ef8].and Lawson5] thatS = n
andM™" is a Clifford torus ins"*1. Later on Leung6] have shown thaf > n— X1, wherei;
stands for the first eigenvalue of the Laplaciad6f. Hence, there is a link between Chern
and Yau problems. Our aim in this note is to improve Leung'’s result for hypersurfaces by
showing thatS > ((n —k)(n — 1)/n(n — k — 1)) (n — A1), wherek stands for the dimension
of the kernel of the second fundamental form. Moreover, we will present a characterization
of the sphere as well as some preliminaries result in the direction of Yau type problem for
codimension greater than one.

Now we will announce our results in the following theorems.

Theorem 1. Lety : M" — S"*P be a minimal immersion of a compact Riemannian
manifold into the Euclidean sphe&¥ 7. If f is a first eigenfunction of the Laplacian of
M" associated to the first eigenvalig, then

[ Yierep+ [ 952 [ Hessi
M M M

where|Hessf|? stands for the norm of the Hessian of f while, . .., e,} stands for an
orthonormal tangent frame oW ™. Occurring equality if and only if1 = n. Furthermore

if [, Hessf 2 > [, 30 1 |B(Vf. e)l? theniy > n — 1.In particular, A1 > n — 1if

Sy IVF2= /a0 [y iy IB(V £, e,

Theorem 2. Lety : M" — S§"+1 be a minimal immersion of a compact Riemannian
manifold into the Euclidean sphes&*1. If 1, stands for the first eigenvalue of the Laplacian
of M" anddim Ker B = k, then we have

—k
/ S i ) )(” n— >/ VP2
M n(n

In particular, if S is constant we havg > ((n — k)(n — 1)/n(n — k — 1))(n — A1).

Theorem 3. Lety : M" — S$"*P be a minimal immersion of a compact Riemannian man-
ifold into the Euclidean sphei®'*? and f a first eignfunction associated to the Laplacian
of M. Then we havdi) if V f lies onKer B, theny,(M") is a totally geodesic sphet#’;

(ii) if Ricy (V £, V) > (n — 1)|V f|?, theny (M™) is also a totally geodesic sphesé.

2. Preliminaries

In order to obtain our results, we establish some preliminaries and notations. Let us
denoteS"*? the Euclidean sphere of constant sectional curvature one. For a Riemannian
closed manifoldV”, let us consider an immersiaf : M" — S"*7. Let{eq, ..., extp}
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be an adapted orthonormal frameMty . With the usual ranges of indices we know that the
second fundamental for® of M" is given by

P
Blei.ej) =Y hlea.

Wherehﬁ‘ = (Aqe;, e;) and A, is the shape operator in the directign
The Gauss equation is given by

Ry = ik —6.|6,k+2<h.k i = hithio).
a=1

Then we have

i = Sidj — &8 + Z(hﬁ‘hﬁ‘ hh). (2.1)
a=1

Taking in account thay is a minimal immersionkqg. (2.1)yields

P n
RiC(ei, ej) = (n — D& — > > hiyhi. (2.2)

a=1k=1

We remember now Bochner formula (see £¢). which states that for a functiofi: M" —
R defined on a Riemannian manifold the following relation holds:

LAV £12 = |Hessf|? + Ricyn (Vf, V) + (V £, V(AS)), (2.3)
where Hess stands for the Hessian form, while Ric stands for the Ricci tenagt ahd

the norm of an operator considered here is the Euclidean which is givierjby: tr(AA*).
If I denotes the identity operator i, then we have

|Hessf — tfl|? = |Hessf|? — 2tfAf + nt? £2. (2.4)
Therefore, ifAf + 1f = 0, we derive for any € R

/M IHessf — tfl]2 = /M IHessf | + (2; n %rz) /M IV £]2. (2.5)

In particular, setting = —11/n onEq. (2.5) we get

/M |Hessf |2 = fM 2+ %/M IV 2. (2.6)

Firstly, we will prove a lemma which enables us to derive the prodftaforems 1 and.3
More precisely we have the following lemma.

A
Hessf + g
n

Lemma 1. Lety : M" — S""P be a minimal immersion of a compact Riemannian
manifold into the Euclidean sphe® 7. Let f be a first eigenfunction associated to the
Laplacian ofM". If {e1, ..., e,} denotes an orthonormal tangent frame &%, then

_ 2 _ - 2 2 2
n M)/MIVfI /M;IB(Vf,e,)I +/M|Vf| /M|Hessf|. @.7)
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In particular, we have

/ Z|B(Vf,€i)|2—/ ‘Hessf_}_ﬂﬂ
Mz M n

Proof. Eq. (2.2)yields Rid fie;, fie;) = (n — DSjj fi f; — >0 _1 > kq highsy f; f;. From
where we obtain

2
= W/ IVF2  (2.8)
n M

RiC(V/, V) =m—DIVSZ =Y |BV [ e)l. (2.9)

i=1

We suppose now thakf = —Aj1f. Hence integrating Bochner formula with the aid of
Stokes theorem aridlg. (2.9) we conclude

s [ vre= [ SB sl [ 1R~ [ Hessri
M M M M

From where we obtain the first part of the lemma. On the other hand Esin@.6)on the

last equality, we obtain
2\ m=Dn—1) 2
= [ IV f1%,
n M

. A

/ Z IB(V £, e)|? — |Hessf + 21l

M \i=1 "

Secondly, we prove a lemma which enables us to ddreorem 2 a

which finishes the proof of lemma.

Lemma 2. LetA : V — V be a traceless non-null symmetric linear operator defined
over a finite dimensional vector space V. Let, .. ., ¢,} be an orthonormal basis which
diagonalize Ai.e. Ag = X;¢;. If dimKer A = k, then for any j we have

o 2
52 < (n—k—1)|A|
I (n —k)
Proof. We may assume without loss of generality that= --- = A; = 0. Hence for

Lj # 0, we have

2
n n
M= D> k| sm-k-1 ) 22
i=k+1 i=k+1
i#] i#]

From where we getn — k))»? <(m—k—DY", 122 = —k— D|AJ> Hence we
finish the proof of the lemma. O
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3. Proof of theorems

Proof of Theorem 1. For the proof ofTheorem we proceed as follows. Since Takahashi
theorem implies: > A1, we have that the left-hand side Bfj. (2.7)of the Lemma 1is
non-negative, so it is also the right-hand side. Therefore we have

/Z|B(Vf,ei>|2+/ IVflzzf Hessf %,
M3 M M

Furthermore, equality occurs if and only.if = n. Moreover, we can write the first equation
of Lemma 1in the following way:

/|Hessf|2—/ Z|B(Vf,e,-)|2=()\1—n+l)/ IVfIZ.
M Mi:l M

Hence/,, [Hessf|? > fM _|B(Vf, e)|?yields(A1 —n+1) > 0. Finallywe note that

JuIVFZ= /2 [ 2 IB(Vf e;)|?implies f,, [Hessf > > [, >71_; |B(V £, )|
From where we complete the proof ®fieorem 1 a
Proof of Theorem 2. Let{es, ..., e,} be an orthonormal referential which diagonalize the

second fundamental form, i.e. Ag = k;e; and letd; be the angle betwee¥i f ande;.
Then we have

IB(Vf, e)|? = (AV f, e:)? = (V f, Ag)? = k? cos?G;|V f 2.

Using nowEg. (2.7)of Lemma 1 we obtain

n
/ > kZ coso; | IV fIP = / |Hessf|? + (n — A1 — 1)/ IV £12.
M\ M M
We apply nowlemma 2to the last equation to obtain

(’”‘——k—l)/ S|vf|22/ lHeSSf|2+/ (1= 1= 2|V I
(n—k Ju M M

Since ), |Hessf|? > (Al/n)fM |V £12, we conclude

(n—k)n—-1) / 2
SIVfI? > — A %
/M IV o —k—Dn 1) v [ VSIS
which finishes the proof cfheorem 2 O

Proof of Theorem 3. At first, we remember a theorem due to Obfth which states
that a Riemannian manifols/” is isometric to a unit spher&” if and only if it admits
a differentiable functiony such that Hesg = — f, where Hesg stands for the Hessian
form.
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We suppose now thal f € Ker B, i.e. B(V f, ¢;) = 0 for anye;. UsingEq. (2.8) we
have

2
/‘Hesstrﬂf‘ :—(”_1)(“_”)/ V12
M n n M

Since the right-hand side of this last equation is hon-positive, we concludejthat and
therefore Hesg = — f. Now using Obata theorem, we conclude ti&iM") is isometric
to a unit spheres” and we finish the proof of the first part @heorem 3

On the other hand if Rig« (V f, V ) > (n — 1)|V f|? according tcEq. (2.9) we derive

[ a=vwr- Yo ser = - [ 1952
M M

i=1

From where we conclude thatf € Ker B and complete the proof atheorem 3 ]
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