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Abstract

The aim of this note is to study some properties of compact minimal submanifoldsMn of the
Euclidean sphereSN . We will give estimates for the first eigenvalue of the Laplacian ofMn as
well as present a new estimate for the norm of the second fundamental form for hypersurfaces.
Moreover, we obtain a new characterization of the sphereSn.
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1. Introduction

Given a closed Riemannian manifoldMn letψ : Mn → Sn+p be a minimal immersion.
We will denote the second fundamental form ofψ(M)byB as well as the squared length ofB
byS. There is a well-known theorem due to Takahashi[10] which asserts that
ψ+nψ = 0,
where
 stands for the Laplacian in the induced metric byψ . Therefore,n is an eigenvalue
of 
 and it was conjectured by Yau[11] that for such embedded hypersurfaces,n is the
first eigenvalue of
. This occurs for some class of minimal isoparametric hypersurfaces
of Sn+1, see[8]. It is important to point out that the first global result in the direction of
Yau problem is that one obtained by Choi and Wang[4] which statesλ1 ≥ (n/2), but their
technique works only for codimension one. In a recent paper, Barros and Bessa[1] showed
thatλ1 ≥ (n/2)+ C, whereC is a constant which depends onMn andψ .
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On the other hand, Chern conjectured that whenS is constant it describes a discrete
set. The first contribution on this problem was given by Simons[9] where he showed if
S satisfies 0≤ S ≤ n/(2 − (1/p)), then eitherS = 0 or S = n/(2 − (1/p)). When
S = n/(2− (1/p))was shown independently by Chern et al.[3] and Lawson[5] thatS = n

andMn is a Clifford torus inSn+1. Later on Leung[6] have shown thatS ≥ n−λ1, whereλ1
stands for the first eigenvalue of the Laplacian ofMn. Hence, there is a link between Chern
and Yau problems. Our aim in this note is to improve Leung’s result for hypersurfaces by
showing thatS ≥ ((n− k)(n−1)/n(n− k−1))(n−λ1), wherek stands for the dimension
of the kernel of the second fundamental form. Moreover, we will present a characterization
of the sphere as well as some preliminaries result in the direction of Yau type problem for
codimension greater than one.

Now we will announce our results in the following theorems.

Theorem 1. Let ψ : Mn → Sn+p be a minimal immersion of a compact Riemannian
manifold into the Euclidean sphereSn+p. If f is a first eigenfunction of the Laplacian of
Mn associated to the first eigenvalueλ1, then

∫
M

n∑
i=1

|B(∇f, ei)|2 +
∫
M

|∇f |2 ≥
∫
M

|Hessf |2,

where|Hessf |2 stands for the norm of the Hessian of f while{e1, . . . , en} stands for an
orthonormal tangent frame onMn. Occurring equality if and only ifλ1 = n. Furthermore,
if
∫
M

|Hessf |2 ≥ ∫
M

∑n
i=1 |B(∇f, ei)|2, thenλ1 ≥ n − 1. In particular, λ1 ≥ n − 1 if∫

M
|∇f |2 ≥ (n/λ1)

∫
M

∑n
i=1 |B(∇f, ei)|2.

Theorem 2. Let ψ : Mn → Sn+1 be a minimal immersion of a compact Riemannian
manifold into the Euclidean sphereSn+1. If λ1 stands for the first eigenvalue of the Laplacian
ofMn anddim KerB = k, then we have∫

M

S|∇f |2 ≥ (n− k)(n− 1)

n(n− k − 1)
(n− λ1)

∫
M

|∇f |2.

In particular, if S is constant we haveS ≥ ((n− k)(n− 1)/n(n− k − 1))(n− λ1).

Theorem 3. Letψ : Mn → Sn+p be a minimal immersion of a compact Riemannian man-
ifold into the Euclidean sphereSn+p and f a first eigenfunction associated to the Laplacian
of M. Then we have: (i) if ∇f lies onKerB, thenψ(Mn) is a totally geodesic sphereSn;
(ii) if RicMn(∇f,∇f ) ≥ (n− 1)|∇f |2, thenψ(Mn) is also a totally geodesic sphereSn.

2. Preliminaries

In order to obtain our results, we establish some preliminaries and notations. Let us
denoteSn+p the Euclidean sphere of constant sectional curvature one. For a Riemannian
closed manifoldMn, let us consider an immersionψ : Mn → Sn+p. Let {e1, . . . , en+p}
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be an adapted orthonormal frame toMn. With the usual ranges of indices we know that the
second fundamental formB of Mn is given by

B(ei, ej ) =
p∑
α=1

hαij eα,

wherehαij = 〈Aαei, ej 〉 andAα is the shape operator in the directioneα.
The Gauss equation is given by

Rijkl = δikδjl − δil δjk +
p∑
α=1

(hαikh
α
jl − hαil h

α
jk).

Then we have

Rijij = δii δjj − δij δji +
p∑
α=1

(hαii h
α
jj − hαij h

α
ji ). (2.1)

Taking in account thatψ is a minimal immersion,Eq. (2.1)yields

Ric(ei, ej ) = (n− 1)δij −
p∑
α=1

n∑
k=1

hαikh
α
jk. (2.2)

We remember now Bochner formula (see e.g.[2]) which states that for a functionf : Mn →
R defined on a Riemannian manifold the following relation holds:

1
2
|∇f |2 = |Hessf |2 + RicMn(∇f,∇f )+ 〈∇f,∇(
f )〉, (2.3)

where Hess stands for the Hessian form, while Ric stands for the Ricci tensor ofMn and
the norm of an operator considered here is the Euclidean which is given by|A|2 = tr(AA∗).

If I denotes the identity operator onTM, then we have

|Hessf − tfI|2 = |Hessf |2 − 2tf
f + nt2f 2. (2.4)

Therefore, if
f + λf = 0, we derive for anyt ∈ R∫
M

|Hessf − tfI|2 =
∫
M

|Hessf |2 +
(

2t + n

λ1
t2
)∫

M

|∇f |2. (2.5)

In particular, settingt = −λ1/n onEq. (2.5), we get∫
M

|Hessf |2 =
∫
M

∣∣∣∣Hessf + λ1

n
fI

∣∣∣∣
2

+ λ1

n

∫
M

|∇f |2. (2.6)

Firstly, we will prove a lemma which enables us to derive the proof ofTheorems 1 and 3.
More precisely we have the following lemma.

Lemma 1. Let ψ : Mn → Sn+p be a minimal immersion of a compact Riemannian
manifold into the Euclidean sphereSn+p. Let f be a first eigenfunction associated to the
Laplacian ofMn. If {e1, . . . , en} denotes an orthonormal tangent frame onMn, then

(n− λ1)

∫
M

|∇f |2 =
∫
M

n∑
i=1

|B(∇f, ei)|2 +
∫
M

|∇f |2 −
∫
M

|Hessf |2. (2.7)
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In particular, we have

∫
M

n∑
i=1

|B(∇f, ei)|2 −
∫
M

∣∣∣∣Hessf + λ1

n
fI

∣∣∣∣
2

= (n− 1)(n− λ1)

n

∫
M

|∇f |2. (2.8)

Proof. Eq. (2.2)yields Ric(fiei, fj ej ) = (n− 1)δijfifj −∑p

α=1

∑n
k=1 h

α
ikh

α
jkfifj . From

where we obtain

Ric(∇f,∇f ) = (n− 1)|∇f |2 −
n∑
i=1

|B(∇f, ei)|2. (2.9)

We suppose now that
f = −λ1f . Hence integrating Bochner formula with the aid of
Stokes theorem andEq. (2.9), we conclude

(n− λ1)

∫
M

|∇f |2 =
∫
M

n∑
i=1

|B(∇f, ei)|2 +
∫
M

|∇f |2 −
∫
M

|Hessf |2.

From where we obtain the first part of the lemma. On the other hand usingEq. (2.6)on the
last equality, we obtain

∫
M

(
n∑
i=1

|B(∇f, ei)|2 −
∣∣∣∣Hessf + λ1

n
fI

∣∣∣∣
2
)

= (n− 1)(n− λ1)

n

∫
M

|∇f |2,

which finishes the proof of lemma.
Secondly, we prove a lemma which enables us to deriveTheorem 2. �

Lemma 2. Let A : V → V be a traceless non-null symmetric linear operator defined
over a finite dimensional vector space V. Let{e1, . . . , en} be an orthonormal basis which
diagonalize A, i.e. Aei = λiei . If dim KerA = k, then for any j we have

λ2
j ≤ (n− k − 1)|A|2

(n− k)
.

Proof. We may assume without loss of generality thatλ1 = · · · = λk = 0. Hence for
λj �= 0, we have

λ2
j =




n∑
i=k+1
i �=j

λi




2

≤ (n− k − 1)
n∑

i=k+1
i �=j

λ2
i .

From where we get(n − k)λ2
j ≤ (n − k − 1)

∑n
i=k+1 λ

2
i = (n − k − 1)|A|2. Hence we

finish the proof of the lemma. �
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3. Proof of theorems

Proof of Theorem 1. For the proof ofTheorem 1we proceed as follows. Since Takahashi
theorem impliesn ≥ λ1, we have that the left-hand side ofEq. (2.7)of the Lemma 1is
non-negative, so it is also the right-hand side. Therefore we have

∫
M

n∑
i=1

|B(∇f, ei)|2 +
∫
M

|∇f |2 ≥
∫
M

|Hessf |2.

Furthermore, equality occurs if and only ifλ1 = n. Moreover, we can write the first equation
of Lemma 1in the following way:

∫
M

|Hessf |2 −
∫
M

n∑
i=1

|B(∇f, ei)|2 = (λ1 − n+ 1)
∫
M

|∇f |2.

Hence
∫
M

|Hessf |2 ≥ ∫
M

∑n
i=1 |B(∇f, ei)|2 yields(λ1−n+1) ≥ 0. Finally we note that∫

M
|∇f |2 ≥ (n/λ1)

∫
M

∑n
i=1 |B(∇f, ei)|2 implies

∫
M

|Hessf |2 ≥ ∫
M

∑n
i=1 |B(∇f, ei)|2.

From where we complete the proof ofTheorem 1. �

Proof of Theorem 2. Let {e1, . . . , en} be an orthonormal referential which diagonalize the
second fundamental formA, i.e. Aei = kiei and letθi be the angle between∇f andei .
Then we have

|B(∇f, ei)|2 = 〈A∇f, ei〉2 = 〈∇f,Aei〉2 = k2
i cos2θi |∇f |2.

Using nowEq. (2.7)of Lemma 1, we obtain

∫
M

(
n∑
i=1

k2
i cos2θi

)
|∇f |2 =

∫
M

|Hessf |2 + (n− λ1 − 1)
∫
M

|∇f |2.

We apply nowLemma 2to the last equation to obtain

(n− k − 1)

(n− k)

∫
M

S|∇f |2 ≥
∫
M

|Hessf |2 +
∫
M

(n− 1 − λ1)|∇f |2.

Since
∫
M

|Hessf |2 ≥ (λ1/n)
∫
M

|∇f |2, we conclude∫
M

S|∇f |2 ≥ (n− k)(n− 1)

(n− k − 1)n
(n− λ1)

∫
M

|∇f |2,

which finishes the proof ofTheorem 2. �

Proof of Theorem 3. At first, we remember a theorem due to Obata[7] which states
that a Riemannian manifoldMn is isometric to a unit sphereSn if and only if it admits
a differentiable functionf such that Hessf = −f , where Hessf stands for the Hessian
form.
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We suppose now that∇f ∈ KerB, i.e.B(∇f, ei) = 0 for anyei . UsingEq. (2.8), we
have∫

M

∣∣∣∣Hessf + λ1

n
f

∣∣∣∣
2

= (n− 1)(λ1 − n)

n

∫
M

|∇f |2.

Since the right-hand side of this last equation is non-positive, we conclude thatλ1 = n and
therefore Hessf = −f . Now using Obata theorem, we conclude thatψ(Mn) is isometric
to a unit sphereSn and we finish the proof of the first part ofTheorem 3.

On the other hand if RicMn(∇f,∇f ) ≥ (n− 1)|∇f |2 according toEq. (2.9), we derive∫
M

(n− 1)|∇f |2 −
n∑
i=1

|B(∇f, ei)|2 ≥ (n− 1)
∫
M

|∇f |2.

From where we conclude that∇f ∈ KerB and complete the proof ofTheorem 3. �
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